Spacewatch Support of Deep Wide-field NEO Surveys

National Research Council On 2009 April 20

by Robert S. McMillan, University of Arizona Email: <u>bob@lpl.arizona_du</u> URL: <u>http://spacewatch.lpl.arizona.edu</u>

Abstract

- More observations of positions and magnitudes (followup) of NEOs needed.
- Demand for followup will increase with new deep, wide-area surveys.
- Spacewatch an established observatory:
 - Equipment suited to followup.
 - Room for improvement.
 - Expansion to larger telescopes.

Types of Detections of Asteroids

- Discovery: Previously unknown object.
- Followup:
 - Targeted on specific object.
 - Incidental Astrometry (IA) while surveying or following up some other object.
 - Recovery or rediscovery: targeted or incidental observation of a lost or uncertain object.
 - Prediscovery observation ("precovery"):
 - Old IA linked by MPC.
 - Old images re-inspected on request)

Why Targeted Followup is Needed

- Discovery arcs too short to define orbits.
- Objects can escape redetection by surveys:
 - Surveys busy covering other sky (revisits too infrequent).
 - Objects tend to get fainter after discovery.
- Followup observations need to outnumber discoveries ×10-100.
- Sky density of detectable NEOs too sparse for IA alone.

Definitions

- PHA = "Potentially Hazardous Asteroid" but not really...
- PHA *orbit* gets close to Earth's *orbit*, but not necessarily to the asteroid itself.
- Close approach lists by MPC, JPL, NEODyS.
- "Virtual Impactor" (VI) = colloquial usage for an object with some virtual impact solutions.

Completeness of Followup

- 40% of PHAs observed on only 1 opposition.
- 18% of PHAs' arcs <30^d; 7 PHAs obs. < 3^d.
- 20% of potential close approaches will be by objects observed on only 1 opposition.
- $1/3^{rd}$ of H ≤ 22 VI's on JPL risk page *are lost*. - $\frac{1}{2}$ of those were discovered within last 3 years.

How "lost" can they get?

- (719) Albert discovered visually in 1911.
- "Big" Amor asteroid, diameter ~2 km.
- Favorable apparitions only every 30 yrs.
- Missed in 1941 & 1971.
- MPC recognized (719) as a rediscovery by Spacewatch in 2000.

1979 XB: A "Big" Lost "VI"!

- 4-day observed arc in 1979 December.
- $H \approx 18.5 \leftrightarrow Diameter 370-1200 m$.
- Synodic period $\approx 1.4^{\text{y}}$.
- Possible close encounters in 2056 & 2086.
- Not rediscovered in 3 decades of modern surveying.

How lost they can get (cont'd.)

- 2003 BK47 discovered 2003 Jan 30.
- V=21.8, 0.4 deg/day, Δ=1.6 AU.
- Followed for a month until too faint.
- PHA w/ a=2.74, e=0.71, $P_s=1.28$ yr.
- Diameter ~ 0.4-1.2 km.
- Next favorable apparition in mid-2011.
- Uncertainty in 2011 ~2-3 degrees.

Spacewatch Project

- 1st use of CCDs for solar system astrometry (1984), led by T. Gehrels.
- Got MPC to save Incidental Astrometry (IA).
- Studies of NEOs, main belt asteroids, TNOs.
- ~\$20M assets, doing followup to complement wide-area surveys.

Current Spacewatch Systems

- 0.9-meter telescope refurbished in 2002:
 - New drive motors, electronics, optics, CCDs.
 - Original (1921) mount, fork, gears & tube.
- 1.8-meter telescope designed in 1992, commissioned in 2001.
- Emphasis on followup of NEOs when faint.
- Relevance to the future of NEO surveys.

0.9-meter Spacewatch Telescope

- 4-CCD Mosaic with 37 million pixels, 2.9 deg².
- 1 arcsec pixels for good astrometry.
- Bandpass $\approx 0.5-0.9$ microns; $\lambda eff \approx 0.7$ microns.
- Began 2003 Apr; 23 nights scheduled per lunation.
- Fully automated in 2005 May.
- Patterns near opposition & East in morning.
 - 1400 deg² per lunation.
 - 2 min exposure & 2 min read & slew.
 - V mag limit \approx 20.5-21.7 depending on conditions.

Example of Discovery

- Fast-Moving Object (FMO) 2003 SW130.
- Discovered 2003 Sept 20 by A. Gleason.
- V ~19; rate ~12.5 deg/day, Δ~0.004 AU
- Aten asteroid; closest approach 0.001 AU
- H=29, diam. ~3-9 meters.
- a=0.88 AU, e=0.30, MOID=0.0008 AU.

1.8-meter Telescope

- FOV= 0.6 x 0.6 deg on 2048 × 2048 CCD.
- Same bandpass & scale as 0.9-meter.
- Has reached V=23.3 by shift & stacking.
- Typical $V_{lim} \approx 22.3$.
- Mostly drift scanning for smoother background & responsivity.

Stacking @ asteroid rate.

Spacewatch 1.8-meter telescope scans.

Followup of NEOs by Spacewatch

- $\frac{2}{3}$ rds by 1.8-meter scope; $\frac{1}{3}$ by 0.9-meter.
- Concentrating on PHAs, MPC's NEO CP objects, JPL & NEODyS impact risk listings.
- Niche is V \geq 20 mag \rightarrow distant priority obj's.
- Look @ detections vs. time.
- Look @ detections vs. community.
- Examples of recoveries.

Observations of PHAs, by Observatory

V >= 21.5 Contributions to PHA Orbits 2006 Jan 1 - 2009 Feb 28

>50^d arc-lengthening PHA Followup

V≥21.5 PHA Observations 2006 Jan 1 - 2009 Feb 28

Examples of Spacewatch Recoveries of Uncertain PHAs.

•	Object		Unc.	Н	V	MPEC	Arc	Arc	Net O-C
•			(deg)	mag	mag		Before	After	(arcsec)
•	2000	UL11	2	20.1	21.9	2003-S71	28d	1039d	3320
•	1998	VS**	4	22.3	21.3	2003-Y18	32d	1831d	1581
•	2001	US16	2	20.2	20.7	2004-В68	31d	802d	485
•	2000	EV70*	3	20.5	20.9	2004-E11	46d	1193d	214
•	1999	VT25	3	21.4	21.5	2004-U47	26d	1786d	7556
•	1990	SM	80	16.2	21.2	2005-C26	24d	5225d	23022
•	2002	TW55	1	18.0	21.7	2005-E54	52d	831d	237
•	2003	BH	?	20.7	22.7	2005-J56	51d	844d	45
•	1998	VF32	2	21.2	21.2	2005-W43	14d	2555d	5581
•	2001	YP32	2	22.0	21.4	2005-X55	109d	1453d	21
•	2004	JQ1	1	20.1	21.8	2006-C02	31d	600d	210
•	2004	RY109	0	19.1	22.6	2006-C19	94d	510d	22
•	2005	TR50**	1	20.2	21.5	2006-F24	2d	164d	3660
•	2000	PP9	1	19.3	21.4	2007-Н51	144d	2513d	402
•	2003	WG	1	19.1	20.9	2007-K24	32d	1246d	2067
•	2005	GO22	1	18.7	21.8	2007-L56	35d	764d	1366

• Notes: ** Asteroids 1998 VS and 2005 TR50 lost their PHA status due to the recoveries' updates of their orbits. Station G96 recovered 2005 TR50 on the same night as Spacewatch.

• * Spotted by on-line volunteer Peter B. Lake.

Additional Recoveries of PHAs with more than 2000 days between measurements.

•	Object	Object Veph		Date			Arc ext.(d)
•	T96500K	22 4	2003-R29	2003	09	04	2245
•	J95S00A	22.4	2003-R29	2003	09	04	2877
•	J98S15C	22.8	2005-J65	2005	05	14	2182
•	J90H00A	21.4	2005-R01	2005	08	28	5574
•	J99A10Q	21.6	2006-X52	2006	12	12	2847
•	(175706)	21.3	2006-Y44	2006	12	24	2080
•	J96E000	21.6	2006-Y72	2006	12	26	2851
•	J91J00W	22.0	2007-В05	2007	01	15	3519
•	J96R03G	22.1	2007-P25	2007	08	09	3738
•	KOOE70W	20.5	2007-Y51	2007	12	28	2834
•	KOOW10K	20.3	2007-Y51	2007	12	28	2148

 Note: "Veph" = ephemeris magnitude at the time of the recovery.)

Future Roles of Spacewatch:

- Wide-field Infrared Survey Explorer (WISE):
 UCLA/JPL MIDEX spacecraft mission in 2010.
 - Thermal IR detection allows diameter measures.
 - Searches 90 deg from Sun.
- Panoramic Survey Telescope and Rapid Response System (Pan-STARRS):
 - IfA/U. Hawaii.
 - PS-1 single-scope prototype soon.

WISE Wide-field Infrared Survey Explorer

WISE will deliver to the scientific community:

Over 1 million images covering the whole sky in 4 infrared wavelengths

Catalogs of ≈ 500 million objects seen in these 4 wavelengths

wise.astro.ucla.edu

WISE and Asteroids

Gaspra

- Asteroids are much brighter in the IR than in the optical.
- They move in the hours between WISE frames.
- For asteroids with known orbits, WISE sensitivity will be slightly better than for fixed celestial objects:
 - -Asteroids generally move in the same direction that WISE scans and thus get more repeated observations than stars.
 - -Asteroids' movement across the sky greatly reduces the confusion noise from unresolved celestial sources.

Asteroids move

WISE will find PHAs

 Chesley and Spahr (2003) found that the asteroids most likely to impact the Earth tend to be close to the Sun. WISE observes at ~90° from the Sun, while current surveys work mostly around opposition, 180° from the Sun. Incidental Detections of Asteroids in WISE All-sky IR Survey

- Several $\times 10^5$ detections @ 12 & 23 μ m.
- Main belt asteroids ≥ 3 km in diameter.
- 100's of NEOs \geq few \times 100 m in diameter.
- Detection tracklets long & dense compared to typical ground-based ones.
- "NEOWISE" to turn around detections for posting by MPC in ≤ 10 days.

Pan-STARRS-1's Followup Needs (Jedicke 2006 private comm.)

- Detect ~5,000 H \leq 22 NEOs during PS1 ops.
- ~10% might lack 3rd night due to weather, picket fence, camera fill factor, guiding OTA cells, etc.
- Another ~10% with poorly determined orbits.
- \rightarrow ~200-300 PS1-discovered NEOs/yr.
- \rightarrow ~200 V \leq 23 targets/yr for Spacewatch.

Proposed Enhancements

- Software
 - Automate search patterns (both 'scopes).
 - Automate target selection, pointing, focusing, rotation (1.8-meter 'scope).
- Hardware (1.8-meter 'scope):
 - Faster, flatter, higher resolution CCD(s).
- Gains:
 - $-\uparrow 50\%$ in time efficiency
 - $-\uparrow 0.5 1.0$ mag in sensitivity
 - "Staring" exposures @ any declination.

Use Bigger Telescopes

- Target-of-Opportunity Mode \rightarrow V=23. – KPNO 4-meter MOSAIC camera, FOV 35'×35'.
 - WIYN 3.5-meter MiniMo camera, FOV 10'×10'.
- Steward 2.3-m 90Prime camera, FOV ~1 deg².
- New Staff Member
 - Learn, propose, coordinate, observe, analyze, report.
- ~100 hours (~100-300 NEOs) per yr possible.

Preliminary Cost Estimates

- Continue @ subsistence level: \$587K/year.
- Continue w/ upgrades & larger 'scopes: \$730K/year.
- All of the above plus new detector(s) :
 - Annual cost \$730K.
 - Plus one-time cost of \$190K.

Advantages

- Better orbits for many NEOs, especially PHAs.
- Avoid loss of some objects after discovery.
- Prompt response to urgent requests.
- Personnel, assets, infrastructure, & site.
- Predictable costs.

Disadvantages: Compared to What?

- No comparable followup telescope.
- ???

Summary

- Followup needs will increase.
- Biggest 'scope dedicated to followup.
- Flexible in time allocation.
- Expansion to 2.3-m, WIYN, 4-meter.

Acknowledgements

- The Spacewatch Team & the WISE Team.
- A. S. Descour, R. Jedicke, J. A. Larsen, & R. G. Walker.
- The IAU's Minor Planet Center listings.
- NASA's NEOO & PAST Programs.
- The Brinson Foundation, the estates of R. L. Waland and R. S. Vail, & other private donors.